<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
Answer: false
Explanation:
It is false that to study Earth's interior, geologists often rely on indirect methods, such as evidence from fossils. They rely on seismic wave.
Answer:
Newton's Cradle is a neat way to demonstrate the principle of the CONSERVATION OF MOMENTUM.
What happens here is when the ball on one end of the cradle is swung and it hits the other balls that are motionless, or stationary, the momentum of the swinging ball is transferred to the next ball upon impact.
Momentum is not lost in this action, what happens when it hits the next ball, the momentum is transferred to the next one, and then the next, and the the next, till it reaches the last ball on the other end. Since nothing is next to the last ball, it pushes the ball upwards, which will swing down and repeat the process going the other way.
This also demonstrates the CONSERVATION OF ENERGY. As you will see, the energy continues to move through the other balls, passing it from one ball to the other, which keeps this constantly moving.