Answer: Option (a) is the correct answer.
Explanation:
The stream that flows during or after the rainfall is called an ephemeral stream. This stream occurs in areas where there is less rainfall or deficiency of moisture.
The stream that flows only in flat lands is called as river.
Mechanical weathering results in the breaking of rocks causes ice wedging.
Chemical weathering results in the change in molecular structure of rocks and soil.
Thus, it can be concluded that option (a) is the correct answer.
If two different elements combine separately with a fixed mass of a third element, the ratio of the masses in which they do so are either the same as or a simple multiple of the ratio of the masses in which they combine with each other.
<span>Group 1 can be characterized as atoms that have 1 electron in their valence shell. This is valuable when dealing with these questions, because the loss or gain of valence electrons is what defines ionic relationships. When group 1 elements form ionic bonds with other atoms, they are extremely likely to lose their valence electron, since the nucleus has a weaker pull on it than, say, a chlorine atom has on its 7 valence electrons. The weaker pull between the nucleus and the valence electron of group 1 elements means that the radius is high, since the electron is more free to move with less pull on it. This also means that the first ionization energy is low, since it takes relatively little energy for that electron to be pulled away to another atom.</span>
Answer:
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
ppm (parts per million) concentration is defined as the mass (in milligrams) of a substance dissolved in one liter of solution.
In our case we have:
mass of MgBr₂ = 12.41 g
volume of water (which is equal to the final solution volume) = 2.55 L
Now we devise the following reasoning:
if 12.41 g of MgBr₂ are dissolved in 2.55 L of water
then X g of MgBr₂ are dissolved in 1 L of water
X = (1 × 12.41) / 2.55 = 4.867 g of MgBr₂
if in 184 g (1 mole) of MgBr₂ we have 160 g of Br⁻
then in 4.867 g of MgBr₂ we have Y g of Br⁻
Y = (4.867 × 160) / 184 = 4.232 g of bromide (Br⁻)
4.232 g of bromide (Br⁻) = 4234 mg of bromide (Br⁻)
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Sediment layers stop lateral spreading when they encounter a barrier and they run out of additional sedimentary material. Lateral spreading is the lateral movement of gently to steeply sloping, saturated soil deposits caused by earthquake-induced liquefaction. Hope this answers the question.