I’m assuming it’s type one (most likely) diabetes!
Answer:
Covalent bond
Explanation:
they will make a covalent bond with each other because both are non- metals and have a low electronegativity difference.
Answer:
3) NaCl.
Explanation:
<em>∵ ΔTf = iKf.m</em>
where, <em>i</em> is the van 't Hoff factor.
<em>Kf </em>is the molal depression freezing constant.
<em>m</em> is the molality of the solute.
<em>The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. </em>
<em></em>
- For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<em>So, for sugar: i = 1.</em>
<em>∴ ΔTf for sugar = iKf.m = (1)(Kf)(2.0 m) = 2 Kf.</em>
<em></em>
- For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
For NaCl, it is electrolyte compound which dissociates to Na⁺ and Cl⁻.
<em>So, i for NaCl = 2.</em>
<em>∴ ΔTf for NaCl = iKf.m = (2)(Kf)(1.0 m) = 2 Kf.</em>
<em></em>
<em>So, the right choice is: 3) NaCl.</em>
<em></em>
Answer:
1.18 × 10²⁴ particles Mg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
47.7 g Mg
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of Mg - 24.31 g/mol
<u>Step 3: Convert</u>
<u /> = 1.18161 × 10²⁴ particles Mg
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
1.18161 × 10²⁴ particles Mg ≈ 1.18 × 10²⁴ particles Mg
Answer:
KOH(aq) + HCI(aq) -----> KCI(aq )+ H2O
base acid salt water
hope this helps :)
Explanation: