Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Answer:
Apply Newton's second law in the moving direction.
Explanation:
Friction force applies in the opposite direction of motion; as a restriction.
Answer:
distance
Explanation:
it is the distance traveled by light in one year
A decrease in velocity is referred to as deceleration. If car is moving at 30 m/s and stop in 50 m .The value of deceleration is 11.56 ms−2.
<h3>How to calculate deceleration ?</h3>
While acceleration is motion in which an object's speed varies every second, deceleration is motion that causes an object to slow down.
We are aware that acceleration refers to an object's rate of increase in speed, and deceleration refers to an object's rate of decrease in speed. For instance, when we apply the brakes while driving, we benefit from the vehicle's ability to decelerate and slow down.
The Deceleration Formula is the final velocity minus the initial velocity, with a negative sign in the result because the velocity is decreasing, if starting velocity, final velocity, and time taken are given.
velocity of car = 30 m/s
car need to stop in 50m
Deceleration a = v^2 – u^2 / 2s
= 0^2 - 50^2 / 2*30
= 11.56
Deceleration of the care = 11.56 ms−2
To learn more about deceleration refer :
brainly.com/question/75351
#SPJ4
The electromagnetic force, and the gravitational force<span>.
</span>