Answer:
P = 2.145kPa
Explanation:
Mass = 22.1g
Molar mass of CO2 = 44g/mol
Vol = 165mL = 0.165L
T = -188°C = (-188 + 273.15)K = 85.15K
R = 8.314J/mol.K
From ideal gas equation,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles if the gas
R = ideal gas constant
T = temperature of the gas
n = number of moles
n = mass / molar mass
n = 22.1 / 44 = 0.50moles
PV = nRT
P = nRT/ V
P = (0.5 × 8.314 × 85.15) / 0.165
P = 2145.26Pa = 2.145kPa
Pressure of the gas is 2.145kPa
Answer:
b)5l x 10kg c)10kg + 9l (Not sure for the last 1)
Answer:
New volume is 25.0 mL
Explanation:
Let's assume the gas sample behaves ideally.
According to combined gas law for an ideal gas-
where, and represent initial and final pressure respectively
and represent initial and final volume respectively
and represent initial and final temperature (in kelvin) respectively
Here, , , and
So,
So, the new volume is 25.0 mL
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL