Pb + Mg(NO₃)₂ → Pb(NO₃)₂ + Mg
This reaction would NOT occur because Pb is less reactive than Mg and as such Pb cannot displace the Mg in order for the reaction to occur under normal conditions.
Mg + Fe(NO₃)₂ → Fe + Mg(NO₃)₂
This reaction would occur. This is because Mg is more reactive than Fe and as such can displace it in the reaction, thus allowing the reaction to occur under normal conditions.
Cu + Mg(NO₃)₂ → Cu(NO₃)₂ + Mg
This reaction would NOT occur. Mg is more reactive than Cu, and as such copper cannot displace magnesium in order for the reaction to occur under normal conditions.
Answer:
He traveled at a speed of 4 m/s with a velocity of 4m/s north, and his acceleration changed when stopping for lunch.
Explanation:
Trust me took test got it right!
Answer:
100 C or 212 F
Explanation:
That is the boiling point for liquid so both gas and liquid are presented.
Answer: 92 kg
Explanation:
because the rest of them are increasing weight or not changing at all and if you were to go to the moon you would weigh less
Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous.
The process of a solid becoming a liquid is called melting. (an older term that you may see sometimes is fusion). The opposite process, a liquid becoming a solid, is called solidification. For any pure substance, the temperature at which melting occurs—known as the melting point—is a characteristic of that substance. It requires energy for a solid to melt into a liquid. Every pure substance has a certain amount of energy it needs to change from a solid to a liquid. This amount is called the enthalpy of fusion (or heat of fusion) of the substance, represented as ΔHfus. Some ΔHfus values are listed in Table 10.2 “Enthalpies of Fusion for Various Substances”; it is assumed that these values are for the melting point of the substance. Note that the unit of ΔHfus is kilojoules per mole, so we need to know the quantity of material to know how much energy is involved. The ΔHfus is always tabulated as a positive number. However, it can be used for both the melting and the solidification processes as long as you keep in mind that melting is always endothermic (so ΔH will be positive), while solidification is always exothermic (so ΔH will be negative).
Table 10.2 Enthalpies of Fusion for Various Substances
Explanation: