.c ...energy
Explanation:
Amplitude does not affect wavelength. It also does not affect wave speed. Amplitude is the energy of the wave measured from the rest position to the top of the crest. A wave with more energy has a higher up crest/ higher amplitude.
Answer:
The height is : 60.025 m
Explanation:
The flowerpot falls off the balcony with zero launch angle
Given the time of fright as 3.5 s then ;
The formula to apply is ;
3.5²= 2H/9.8
12.25 =2H/9.8
12.25 * 9.8 = 2H
120.05 = 2H
120.05/2 = H
60.025 =H
Answer:
The answer is Phase Change
Explanation:
Answer:
Its length is measured to be 0.5 m
Explanation:
From theory of relativity (mass variation), we know that:
m = mo/√(1-v²/c²)
Where, m = relative mass
and, mo = rest mass
The momentum of stick while moving, will be:
P = mv
but, it is given in the form of rest mass as:
P = 2(mo)v
thus, by comparison;
2(mo)v = mv
using value of m from theory of relativity;
2(mo)v = (mo)v/√(1-v²/c²)
√(1-v²/c²) = 1/2 ______ eqn(1)
Now, for relativistic length (L), we have the formula from same theory of relativity;
L = (Lo)√(1-v²/c²)
The rest length (Lo) of meter stick is 1 m, and the remaining term on right side √(1-v²/c²), known as Lorentz Factor, can be given by eqn (1), as equal to 1/2.
Thus,
L = (1 m)(1/2)
<u>L = 0.5 m</u>
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]
In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]
Now we can use the first statement to get the first equation:
where:
W₁₋₂ = work from the state 1 to 2.
where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]