Answer:
4.08 s
Explanation:
Let the passenger took "t" time to catch the train
so in this case the total distance moved by the train + 5 m = total distance moved by the passenger
so we will have
distance moved by train is given as
also the distance moved by passenger
so we will have
t = 4.08 s
Talk about the jobs that pipeline construction provides to citizens and wether or not it’s effects are ultimately eco-friendly
Answer:
Alternating; direct.
Explanation:
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Alternating currents are most often used in the wiring of new buildings and homes, while direct currents are the type stored in batteries and fuel cells.
Basically, the direction of an alternating current changes periodically.
Answer:
i. 15.6 m/s
ii. I = 1.44 KNs
Explanation:
The impulse, I, on a body is the product of force applied on it and the time it acts.
i.e I = F x t
Impulse is sometimes expressed as the change in momentum of a body. It is measured in Ns.
i. mass, m, of the player = 92 kg
initial velocity of the player, u = 9.4 m/s
final velocity of the player, v = 6.2 m/s
Since he bounces back on hitting the pole, then the sign of initial and final velocities are of opposite sign.
So that,
change in velocity of the player = final velocity - initial velocity
= 6.2 - (-9.4)
= 6.2 + 9.4
= 15.6 m/s
change in velocity of the player is 15.6 m/s
ii. Impulse, I = m(v - u)
= 92 x 15.6
= 1435.2
Impulse on the player is 1.44 KNs.
Answer:
The answer is "Option 5".
Explanation:
Jadeen claims that only by hitting the wire to make it thinner and wider, it can improve a copper wire's strength, which is why a copper wire's permeability doesn't quite improve and can reduce once it is pounded. Arnell says so by heating its wire, it can improve its strength, and when it is heated, the wire's permeability reduces.