Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value =
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:
Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
Gases are compressible, meaning that when put under high pressure, the particles are forced closer to one another. This decreases the amount of empty space and reduces the volume of the gas. Gas volume is also affected by temperature. When a gas is heated, its molecules move faster and the gas expands.
Answer:
answer is b
Explanation:
I think it is b. I don't know what land lenses are but focusing light on the can would heat it up more.