The lower the activation energy required for a chemical reaction
Answer:
2.25×10¯³ mm.
Explanation:
From the question given above, we obtained the following information:
Diameter in micrometer = 2.25 μm
Diameter in millimetre (mm) =?
Next we shall convert 2.25 μm to metre (m). This can be obtained as follow:
1 μm = 1×10¯⁶ m
Therefore,
2.25 μm = 2.25 μm / 1 μm × 1×10¯⁶ m
2.25 μm = 2.25×10¯⁶ m
Finally, we shall convert 2.25×10¯⁶ m to millimetre (mm) as follow:
1 m = 1000 mm
Therefore,
2.25×10¯⁶ m = 2.25×10¯⁶ m /1 m × 1000 mm
2.25×10¯⁶ m = 2.25×10¯³ mm
Therefore, 2.25 μm is equivalent to 2.25×10¯³ mm.
First, the symbol for sodium oxide is Na₂O
Each Na (sodium) has a charge of 1+, and each O has a charge of 2- :
Na₂¹⁺O²⁻
There are two Na's, however, and each one is 1+, however, so the Na₂ has a total charge of 2+. Because of this, the 2+ from the 2 Na's and the 2- from the O cancel each other out to make 0.
Calculate the mass of water used
that is
100-22.2=77.8g convert into Kg = 77.8/1000=0.0778Kg of water
then calculate the moles of HCOOH used
that is 22.2g/molar mass of HCOOH(1+12+16+16+1)=46
therefore the moles of HCOOH=22.2/46=0.48moles
the mole of water= 77.8/18(molar mass of water= 4.32moles
the molarity of HCOOH = 0.48mol/0.0778kg=6.17M
The mole ratio= moles of HCOOH divided by total moles
the total moles= 0.48+4.32=4.8moles
therefore the mole ratio= 0.48/4.8moles=0.1(the moles fraction of HCOOH)
CH2O2 formic acid I believe so