Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:
that's nice very nice super duper nicer
Answer: <em>An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.</em>
Explanation: meaning, an object will continue in its same direction until stopped or acted upon by another force.
Resistance of a wire is directly proportional to its length and inversely proportional to the square of its radius.
Thus, if the length is doubled, and the radius is halved:
R₂ = 2R₁/(1/2)²
R₂ = 8R₁
Therefore the resistance increases eight times.
Answer:
the minimun horizontal force is = 5,88 N
Explanation:
Using a free body diagram we can calculate this force, in the image attached and using Newton's law we have: