Density of the mixture = mass of the mixture / volume of the mixture
Mass of the mixture = mass of antifreeze solution + mass of water.
Mass of antifreeze solution = density of the antifreeze solution * volume
Mass of antifreeze solution = 0.8g/ml * 5.1 l * 1000 ml / l = 4,080 g
Mass of water = density of water * volume of water = 1.0 g/ml * 3.8 l * 1000 ml / l = 3,800 g
Mass of mixture = 4080 g + 3800 g= 7880 g
Volume of mixture = volume of antifreeze solution + volume of water
Volume of mixture = 5100 ml + 3800 ml = 8900 ml
Density of mixture = 7800 g / 8900 ml = 0.876 g/ml
Specific gravity of the mixture = density of the mixture / density of water = 0.876
Answer: 0.876
Answer:
Pressure = 4.81atm
Explanation:
Pressure = ?
Temperature = 20°C = (20 + 273.15)K = 293.15K
Volume = 2.50L
R = 0.082J/mol.K
n = 0.5mol
From ideal gas equation,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles of the gas
R = ideal gas constant and may varies due to unit of pressure and volume
T = temperature of the ideal gas
PV = nRT
Solve for P,
P = nRT/ V
P = (0.5 * 0.082 * 293.15) / 2.50
P = 12.01915 / 2.50
P = 4.807atm
P = 4.81atm
The pressure of the ideal gas is 4.81atm
2Fe2O3, reason is when we add 4Fe + 3O2, we get the same answer, but in a different form.
Answer:
0.2
Explanation:
Given parameters:
Mass of helium = 0.628g
Mass of neon = 11.491g
Mass of argon = 7.613g
Unknown:
Mole fraction of neon = ?
Solution:
The mole fraction of an element is the number of moles of that element to the total number of moles in the gas mixture.
We need to calculate the number of moles of each element first;
Number of moles =
Molar mass of Helium = 4g/mol
Molar mass of Neon = 20g/mol
Molar mass of Argon = 40g/mol
Number of moles of He = = 0.16moles
Number of moles of Ne = = 0.58moles
Number of moles of Ar = = 0.19moles
Total number of moles = 0.16moles + 0.58moles + 0.19moles = 0.93moles
Mole fraction Neon = = 0.2
Standardized means that a specific amount EDTA is added to a specific volume of distilled water. Water hardness is determined by the the amount of a standard EDTA solution to change the color of the water from red to blue. For example if one added the correct amount of EDTA to twice the volume of distilled water the solution would be weak. Titration of the hard water would give a erroneous high result.