The term used to describe the rapid release of bubbles, or rapid release of a gas from a liquid or a solution is called Effervescence. The bubbling of a solution is due to the escape of a gas which may be from a chemical reaction, as in fermenting liquid, or by coming out of a solution after having been under pressure, as in a carbonated drink. For example; soda, champagne among others.
<h3>
Answer:</h3>
3.38 × 10²⁴ molecules CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 5.61 moles CO₂
[Solve] molecules CO₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.37834 × 10²⁴ molecules CO₂ ≈ 3.38 × 10²⁴ molecules CO₂
Answer: Concentration of in the equilibrium mixture is 0.31 M
Explanation:
Equilibrium concentration of = 0.729 M
The given balanced equilibrium reaction is,
Initial conc. x 0 0
At eqm. conc. (x-2y) M (y) M (3y) M
The expression for equilibrium constant for this reaction will be:
3y = 0.729 M
y = 0.243 M
Now put all the given values in this expression, we get :
concentration of in the equilibrium mixture =
Thus concentration of in the equilibrium mixture is 0.31 M
Answer:
n = 12.18 moles
Explanation:
Given that,
The volume of a canister, V = 1 L
The temperature of the canister, T = 100 K
Pressure, P = 100 atm
We need to find the number of moles of gas. Let there are n number of moles. We know that,
PV = nRT
Where
R is gas constant, R = 0.0821 L*atm/mol*K
Hence, there are 12.18 moles of gas.