Answer:
<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>
Explanation:
<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>
Newton's first and second laws of motion both do, but I think the one you're looking for is: <em>The First Law of Motion</em>. That description is a little more direct.
It says that if an object is not acted on by a net external force, then it continues in "constant, uniform motion".
The energy of a wave is directly proportional to the square of the waves amplitude. Therefore, E = A² where A is the amplitude. This therefore means when the amplitude of a wave is doubled the energy will be quadrupled, when the amplitude is tripled the energy increases by a nine fold and so on.
Thus, in this case if the energy is 4J, then the amplitude will be √4 = 2 .
When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.