Answer:
B) 2.7 g of aluminium has a volume of 1 cm^3
Explanation:
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;
If the density of aluminum is 2.7 g/cm³, it simply means that 2.7 g of aluminium has a volume of 1 cm³
Check:
Given the following data;
Mass = 2.7 grams
Volume = 1 cm³
Substituting into the formula, we have;
Density = 2.7 g/cm³
This question is incomplete, but I can do it for you, considering the equation to be *In its most famous form*:
A+B⇒C+D
A and B here are the reactants, while C and D are the products.
The reactants are generally the input materials in the beginning of any chemical reactions and they usually, if not always, are on the left hand side of the chemical equation. While the products are on the right hand side and are the final output of the chemical reaction.
Hope this helps.
To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.
PART A)
The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:
. This is the total charge on the inner surface of the conducting shell.
PART B)
The positive charge (of the same value) on the external surface of the conducting shell is:
The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,
Answer:
Explanation:
Given that,
The speed of an electromagnetic wave traveling in a transparent nonmagnetic substance is given by :
Where
k is the dielectric constant of the substance.
v is the speed of light in water
So, the speed of light in water is
Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides
i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by
(b)
Magnetic flux,
(c)
R = 3 ohm
magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A