The distance between the two adjacent nodes = λ/2.
<h3>What is Wavelength?</h3>
A periodic wave's wavelength is its spatial period, or the length over which its form repeats. It is a property of both travelling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda (λ) is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
The distance between the two adjacent nodes = λ/2.
for the standing wave ,the distance between any two adjacent nodes or antinodes is 1/2 λ.
to learn more about the wavelength go to - brainly.com/question/6297363
#SPJ4
Multiplied by; speed = distance x time
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :
- After it has traveled through 2 cm :
<h3>b.</h3>
- After it has traveled through 1 cm :
- After it has traveled through 2 cm :
Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient the formula is:
where I is the intensity of the beam, is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:
After travelling 2 cm:
<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:
After travelling 2 cm:
Answer:
Vprom = 0.00347[km/min]
Explanation:
We can calculate each of the average speeds and then perform the overall average between the two speeds.
V1 = 6/54
V1 = 0.111[km/min]
V2 = 1/16
V2 = 0.0625[km/min]