Answer:
Atomic number
Explanation:
Hope it helps you in your learning process.
Answer:
<h2>470.59 kg</h2>
Explanation:
The the mass of the car can be found by using the formula
f is the force
a is the acceleration
From the question we have
We have the final answer as
<h3>470.59 kg</h3>
Hope this helps you
Answer:
a. A baseball after it has been hit - not in free fall
b. A rock that is thrown in the air - not in free fall
c. The moon - free-fall
d. A paper airplane - not in free fall
e. A bird flying - not in free fall
Explanation:
- The free-fall is defined as the falling of an object due to the action of gravity. The object is not experiencing any other force neglecting the air resistance.
- If an object is in free-fall, the direction of its motion is directed towards the center of the earth. It does not have a horizontal component of velocity.
- If the body is under free-fall, but a centripetal force acts on it where it is equal to the gravitational force at that point. The object will have two components of velocity along the tangential line, perpendicular to the radius of the orbit.
a. A baseball after it has been hit - not in free fall according to point 1 & 2.
b. A rock that is thrown in the air - not in free fall according to point 1.
c. The moon - free-fall according to point 3.
d. A paper airplane - not in free fall according to point 1 & 2.
e. A bird flying - not in free fall according to point 1 & 2.
Gravity slows the upward speed of any rising object by 9.8 m/s every second.
If the ball is tossed upward at 20 m/s, then it's at the top of its arc and its speed has dwindled to zero in (20/9.8) = 2.04 seconds.
During that time, its starting speed is 20 m/s and its ending speed is zero, so its AVERAGE speed all the way up is (1/2) (20 + 0) = 10 m/s .
Sailing upward for 2.04 seconds at an average speed of 10 m/s, the ball rises to (2.04 x 10) = <em>20.4 meters.</em>
Answer:
(a)
P₂ = 7.13 atm
(b)
T₂ = 157.14 K
Explanation:
(a)
V₁ = initial volume = 3.7 L = 3.7 x 10⁻³ m³
V₂ = final volume = 0.85 L = 0.85 x 10⁻³ m³
P₁ = Initial Pressure of the gas = 0.91 atm = 0.91 x 101325 = 92205.75 Pa
P₂ = Final Pressure of the gas = ?
Using the equation
= 722860 Pa
= 7.13 atm
(b)
T₁ = initial temperature =283 K
T₂ = Final temperature = ?
using the equation
T₂ = 157.14 K