The theoretical proportion is given by the balanced chemical equation:
2 mol NBr / 3 mol Na OH
Then x mol NaOH / 40 mol NBr3 = 3mol NaOH/2 mol NBr3
Solve for x, x = 40 * 3/2 = 60 mol NaOH.
Given that there are 48 mol NaOH (less than 60) this is the limitant reactant and the other is the excess reactant.
Answer: NBr3..
Hello!
The pressure of the gas when it's temperature reaches 928 °C is 3823,36 kPa
To solve that we need to apply
Gay-Lussac's Law. It states that the pressure of a gas when the volume is left constant (like in the case of a sealed container like an aerosol can) is proportional to temperature. This is the relationship derived from this law that we use to solve this problem:
Have a nice day!
Yesssirrrrrrrrr someone answer
Answer:
The correct answer to the question which statements about Avogadro’s Law is false is
c. At constant T and P, doubling the moles of gas decreases the volume by half.
Explanation:
Avogadro's law describes the relationship between the volume of a mass of gas and the number of moles present. Avogadro's law states that at standard (or the same) temperature and pressure, equal volumes od all gases contain equal number of molecules
That is mathematically
where
V₁ = volume of first sample
V₂ = volume of second sample
n₁ = number of moles in first sample
n₂ = number of moles in second sample
Rows of elements are called periods. The period number<span> of an element signifies the highest unexcited energy level for an electron in that element.
</span>Columns of elements help define element groups<span>. </span>Elements within a group share<span> several common properties. Groups are elements have the same outer electron arrangement.</span>