Answer : The final pressure of the gas will be, 26.8 kPa
Explanation :
According to the Boyle's law, the pressure of the gas is inversely proportional to the volume of the gas at constant temperature of the gas and the number of moles of gas.
or,
or,
where,
= initial pressure of the gas = 209 kPa
= final pressure of the gas = ?
= initial volume of the gas = 10.0 L
= final volume of the gas = 78.0 L
Now put all the given values in this formula, we get the final pressure of the gas.
Therefore, the final pressure of the gas will be, 26.8 kPa
Answer:
Explanation:
Hello there!
In this case, according to the given information of the solubility of copper chloride, as the maximum amount of this salt one can dissolve without having a precipitate, we infer that since just 73 grams are actually dissolved, the following amount will remain solid as a precipitate:
Best regards!
Answer:
15.70mg would remain
Explanation:
Partition coefficient is used to extract or purify a solute from a solvent selectively to avoid interference from other substances. For the problem, formula is:
Kp = Concentration 9-fluorenone in ether / Concentration of solute in H₂O
After the solute, 9-fluorenone, is extracted with water, the mass that remains in ether is:
(19mg - X)
<em>Where X is the mass that now is in the aqueous phase</em>
Replacing in Kp formula:
9.5 = (19mg - X) / 5mL / (X /10mL)
0.95X = 19mg - X / 5mL
4.75X = 19 - X
5.75X = 19
X = 19 / 5.75
X = 3.30mg
That means 9-fluorenone that remain in the ether layer is:
19mg - 3.30mg =
<h3>15.70mg would remain</h3>
Answer:
Well, not always. It depends on where you're doing the boiling. In fact, water will boil at about 202 degrees in Denver, due to the lower air pressure at such high elevations
Explanation:
Moles * Avogadro constant = 5.52 * <span>6.022 x 10^23</span>