The question is incomplete. The mass of the object is 10 gram and travelling at a speed of 2 m/s.
Solution:
It is given that mass of object before explosion is,m = 10 g
Speed of object before explosion, v = 2 m/s
Let be the masses of the three fragments.
Let be the velocities of the three fragments.
Therefore, according to the law of conservation of momentum,
So the x- component of the velocity of the m2 fragment after the explosion is,
∴
Answer:
Explanation:
As a skydiver falls, he accelerates downwards, gaining speed with each second. The increase in speed is accompanied by an increase in air resistance. This force of air resistance counters the force of gravity.
C and c infeijnveirnvinefine
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E = × k × x × x
<u>E = </u><u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E = × 240 × (0.40)²
E = × 240 × 0.16
E = × 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>