Answer:
The elements in each group have the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons. They are the electrons involved in chemical bonds with other elements. Every element in the first column (group one) has one electron in its outer shell.
Explanation:
<u>Answer:</u> The value of for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of = 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:
Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
The expression for for above equation follows:
Putting values in above equation, we get:
Hence, the value of for the reaction at 690 K is 0.05
Explanation:
Starting moles of ethanol acid = 0.020 mol
At the equilibrium 50 % of the ethanol acid molecules reacted
∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %
= 0.010 mol
Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol
Moles of the product gas formed are calculated as
0.010 mol CH3COOH * 1 mol / 2 mol CH3COOH
= 0.005 mol
Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol
That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol
Now Calculate the pressure :
0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas
P1/n1 = P2/n2
P2 = P1*n2 / n1
= 0.74 atm * 0.015 mol / 0.020 mol
= 0.555 atm
The atoms of elements can gain or lose electrons and become ions. Ions are charged particles that have gained or lost electrons. The atoms of elements can gain or lose electrons to form monatomic ions (made from a single atom of an element).
Answer:
The Empirical Formula.
Explanation:
From the empirical formula and using the weight (in g) of a given substance, we can come up with the molecular formula which is the actual weight of a substance. Sometimes, we find that the empircal formula is the molecular formula.