<span>` You can consider T to be in units of seconds/step. Frequency is the inverse of period, so
1/T = frequency and has units of steps per second. There will be 60 times as many steps in a minute.</span>
Answer:
a) a = - 0.106 m/s^2 (←)
b) T = 12215.1064 N
Explanation:
If
F₁ = 9*1350 N = 12150 N (→)
F₂ = 9*1365 N = 12285 N (←)
∑Fx = M*a = (M₁ +M₂)*a (→)
F₁ - F₂ = (M₁ +M₂)*a
→ a = (F₁ - F₂) / (M₁ +M₂ ) = (12150-12285)N/(9*68+9*73)Kg
→ a = - 0.106 m/s^2 (←)
(b) What is the tension in the section of rope between the teams?
If we apply ∑Fx = M*a for the team 1
F₁ - T = - M₁*a ⇒ T = F₁ + M₁*a
⇒ T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
If we choose the team 2 we get
- F₂ + T = - M₂*a ⇒ T = F₂ - M₂*a
⇒ T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
Answer:
A
Explanation:
Basically all the other answer are opposites like Exercise is an effective way to relieve stress and lots of Stress does have Negative effects on people
Answer:
noncompliance
Explanation:
If a scientist unknowingly breaks the law, he is guilty of <u>noncompliance</u>
Answer:
The Balmer series refers to the spectral lines of hydrogen, associated to the emission of photons when an electron in the hydrogen atom jumps from a level to the level .
The wavelength associated to each spectral line of the Balmer series is given by:
where is the Rydberg constant for hydrogen, and where is the initial level of the electron that jumps to the level n = 2.
The first few spectral lines associated to this series are withing the visible part of the electromagnetic spectrum, and their wavelengths are:
656 nm (red, corresponding to the transition )
486 nm (green, )
434 nm (blue, )
410 nm (violet, )
All the following lines lie in the ultraviolet part of the spectrum. The limit of the Balmer series, corresponding to the transition , is at 364.6 nm.