Potassium outermost electron occupy "4s" orbital
Answer:C, atoms must balance positive and negative particles.
Explanation: Got it correct on edgenuity.
When Lead (II) acetate and Hydrogen sulfide react, they form Lead sulfide and Acetic acid. The reaction is a reduction-oxidation (redox) reaction.
The balanced chemical reaction is this:
Pb(C2H3O2)2 + H2S --> PbS + 2C2H4O2
And the net ionic reaction is this:
Pb2+ + S2- --> PbS
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.
Answer:
mass water = 32.4 g
Explanation:
specific heat iron = 0.450 J/g°C
specific heat water = 4.18 J/g°C
32.8 x 0.450 ( 59.1 - 22.4) + mass water x 4.18 ( 59.1- 63.1)=0
541.7 - mass water x 16.7 = 0
mass water = 32.4 g