Answer
the answer is c because i did that before
Explanation:
Answer:
Draw the vector triangle (head to tail)
Let 8 be adjacent and 4 the opposite side
tan theta = 4 / 8 = .5
theta = 26.6 deg
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation
v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
Here i state the conservation of energy rule and use that to justify my answer. I showed how to manipulate percentages to get the final answer of 11000J (2sf). Hope I'm right xx