Answer:
a) 0.049 m
b) Yes, increase
Explanation:
Draw a free body diagram.
In the y direction, there are three forces acting on the feeder. Two vertical components of the tension forces in each rope pulling up, and weight force pulling down.
Apply Newton's second law to the feeder in the y direction.
∑F = ma
2Ty − mg = 0
Ty = mg/2
Let's say the distance the rope sags is d. The trees are 4m apart, so the feeder is 2m horizontally from either tree. Using Pythagorean theorem, we can find the length of the rope on either side:
L² = 2² + d²
L = √(4 + d²)
Using similar triangles, we can write a proportion using the forces and distances.
Ty / T = d / L
Substitute:
(mg/2) / T = d / √(4 + d²)
Solve for d:
Td = mg/2 √(4 + d²)
T² d² = (mg/2)² (4 + d²)
T² d² = (mg)² + (mg/2)² d²
(T² − (mg/2)²) d² = (mg)²
d² = (mg)² / (T² − (mg/2)²)
d = mg / √(T² − (mg/2)²)
Given m = 2.4 kg and T = 480 N:
d = (2.4) (9.8) / √(480² − (2.4×9.8/2)²)
d = 0.049 m
b) If a bird lands on a feeder, this will increase the tension in the rope to support the bird's weight.