Answer:
From smallest to largest:
Capillaries, alveoli, bronchi. bronchioles, trachea, pharynx, nasal cavity.
Answer:
As a new covalent connection develops between the two glucose molecules, one loses a <em>H group,</em> the other loses an<em> OH group</em>, and a <u>water molecule is freed</u>.
<h2>
Why does glucose form a polymer despite being a stable molecule?</h2>
The formation of glucose polymers (glycogen, starch, cellulose) requires the input of energy from uridine triphosphate (UTP). Any tiny molecules must be converted into bigger molecules, which is compatible with the second rule of thermodynamics. Building proteins from amino acids, nucleic acids from nucleotides, fatty acids and cholesterol from acetyl groups, and so on are examples. Energy is released when bigger molecules are broken down into smaller ones, which is compatible with the second rule of thermodynamics. Thus, glucose may be converted to CO2 and H2O, resulting in the production of ATP. While glucose is a tiny molecule and hence relatively "stable," it can exist at a potential energy level and may be used to build up (needs energy) or broken down (<em>produces</em> energy). All of these biochemical processes require the use of enzymes; otherwise, the activation energy of most reactions would require extremely long periods of time for random energy inputs to push the reactions in either direction, despite the fact that energy considerations favor spontaneous breakdown over synthesis.
The surface area is used to get substances in or out through the cell's membrane.
Explanation:
Bread cannot be classified as a compound. Compounds are formed when two or more substances are bonded together chemically, however, mixtures are not chemically bonded.
Bread is a mixture of several compounds such as sugars, proteins, lipids and gases along with a culture of organisms or chemical leavEning agaent. Several of these components
Explanation:
Large chains of monomers form biological macromolecules which carry out many essential functions in the body these can include nucleic acids, carbohydrates, proteins and lipids. These are organic molecules, meaning they're ringed or long-chain Carbons bonded to the elements oxygen (O), hydrogen (H), nitrogen (N) and phosphorus (P).
- Proteins are structural support molecules comprised of long chains of amino acids joined via peptide (CONH) bonds; these are 20 specific units that are arranged into several macromolecules. Amino acids are absorbed through digestion and are incorporated into the body’s cells to make up organs muscles signal molecules and an alternative energy source. Basic makeup: C, H, O, N, S; polar C, O double bonds and N-H bonding
- Carbohydrates function to supply energy and support molecules they consist of mainly sugars or starches in long chains and rings to form monosaccharide monomers. They include monosaccharides, disaccharides and polysaccharides which describes the type of bonding and the degree of complexity of the polymers. Basic makeup: C, H, O -with many polar OH groups
- Lipids function as energy storage and chemical messengers, these include fats, saturated and unsaturated fatty acids with double bonds and steroids and waxes. However, lipids are comprised of fatty acids and glycerol; they do not contain a fixed set of monomers, and unlike the other biological macromolecules, they are not polymers. The arrangement of hydrophobic heads and hydrophobic fatty acid tails can give these non-polar macromolecules hydrophilic and hydrophobic properties. Basic makeup: C, H, O; non polar- a triple condensation reaction produces the molecules from a triple hydroxyl (OH) alcohol bonded to three long-chain carboxylic acids.
Learn more about Lipid macromolecules at brainly.com/question/5094081
Learn more about proteins and carbohydrates at brainly.com/question/10744528
#LearnWithBrainly
Answer: The Difference Between Animal Cells And Plant Cells is below you
Explanation:
Animal cells have centrosomes (or a pair of centrioles), and lysosomes, whereas plant cells do not. Plant cells have a cell wall, chloroplasts, plasmodesmata, and plastids used for storage, and a large central vacuole, whereas animal cells do not.