Answer:
Since both start with the same vertical velocity from the same position with the same acceleration they will reach the lake at the same time.
Explanation:
1. Mass of an object
2. Distance between the objects
I think the elevation of Y and Z are the following:
<span>Y=3200,
Z=2900 </span>
Answer: columbs
Explanation:
Electrical charge are measured in columbs, usually demoted as C. Hence, the charges on proton and electron will be measured in Coloumbs. It typically measures the amount of electricity conveyed per second by a current of 1 ampere. The other units Given such as ; Volt is used for measuring voltage, which is the pressure in an electrical source. AMPERE is used for measuring the current flowing through an electrical circuit.
Dalton is a unit of mass and is about 1.660 * 10^-27 kg
The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m