Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:
Answer:
Explanation:
Use the trigonometric ratio definition of the tangent function and the quotient rule.
Quotient rule: the derivative of a quotient is:
- [the denominator × the derivative of the numerator less the numerator × the derivative of the denominator] / [denominator]²
- (f/g)' = [ g×f' - f×g'] / g²
So,
- tan(x)' = [ sin(x) / cos(x)]'
- [ sin(x) / cos(x)]' = [ cos(x) sin(x)' - sin(x) cos(x)' ] / [cos(x)]²
= [ cos(x)cos(x) + sin(x) sin(x) ] / [ cos(x)]²
= [ cos²(x) + sin²(x) ] / cos²(x)
= 1 / cos² (x)
= sec² (x)
The result is that the derivative of tan(x) is sec² (x)
I need points thanks I need points thanks I need points thanks Wkbejwiwbwe e enjwkwkebe b a owl qiwi192928 Ake eleve
Answer:
The bowling ball will remain in motion until an unbalanced force acts on the bowling ball. ... When the ball hits the pins, they push on the ball with the same amount of force in the opposite direction. This means that the ball will slow down, and the pins will fall, which is the reaction.
Explanation:
Answer:
Kc = 50.5
Explanation:
We determine the reaction:
H₂ + I₂ ⇄ 2HI
Initially we have 0.001 molesof H₂
and 0.002 moles of I₂
If we have produced 0.00187 moles of HI in the equilibrium we have to know, how many moles of I₂ and H₂, have reacted.
H₂ + I₂ ⇄ 2HI
In: 0.001 0.002 -
R: x x 2x
Eq: 0.001-x 0.002-x 0.00187
x = 0.00187/2 = 9.35×10⁻⁴ moles that have reacted
So in the equilibrium we have:
0.001 - 9.35×10⁻⁴ = 6.5×10⁻⁵ moles of H₂
0.002 - 9.35×10⁻⁴ = 1.065×10⁻³ moles of I₂
Expression for Kc is = (HI)² / (H₂) . (I₂)
0.00187 ² / 6.5×10⁻⁵ . 1.065×10⁻³ = 50.5