Answer: The correct answer would be : True
I hope that this helps you !
Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν = =
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
=
So wavelength is 2.9 × 10⁻⁷ m.
Answer:
a) T
b) T
c) F
d) F
e) T
f) T
g) T
h) F
I) F
j) F
k) F
l) F
Explanation:
The w/v concentration is obtained from, mass/volume. Hence;
%w/v= 50/1000= 5%
In the %w/w we have;
25g/100 g = 25% w/w
In combustion reaction, energy is given out hence it is exothermic.
Neutralization reaction yields a salt and water
% by mass of carbon is obtained from;
8× 12/114 × 100 = 84.1%
All the ionic substances mentioned have very low solubility in water.
One mole of a substance contains the Avogadro's number of each atom in the compound.
There are two iron atoms so one mole contains 2× 55.85 g of iron.
Some sulphates such as BaSO4 are insoluble in water.
Halides are soluble in water hence NaI is soluble in water.
The equation does not balance with the given coefficients because the number of atoms of each element on both sides differ.
The equation represents a decomposition of calcium carbonate as written.
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>
When battery discharge / delivering current the lead at the anode is oxidized
that is ;
pb---->pb+ 2e-
since the lead ions are in presence of aquous sulfate in insoluble lead sulfate precipitate onto the electrode
the overall reaction at the anode is therefore
Pb + SO4^2- ---> PbSO4 + 2e-