Answer:
53.5g of NH4Cl
Explanation:
First, we need to obtain the number of mole of NH4Cl. This is illustrated below:
Volume = 0.5L
Molarity = 2M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 2 x 0.5
Mole = 1mole
Now, let us convert 1mole of NH4Cl to gram. This is illustrated below:
Molar Mass of NH4Cl = 53.5g/mol
Number of mole = 1
Mass =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass = 1 x 53.5
Mass = 53.5g
Therefore, 53.5g of NH4Cl is contained in the solution.
The answer to that question is c
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Ideal gas law is a combination of three gas laws, which are Boyle's law, Charles' law and Avogadro's law. Ideal gas law states that PV = nRT, where:
P = pressure of the gas
V = volume of the gas
n = no of moles of the gas
R = universal gas constant
T = absolute temperature in Kelvin
For an object to conduct electricity it should have free or delocalised electrons that are free to pass the charge and hence take part in conducting electricity.
From the given choices
Chlorine is a halogen existing as a diatomic gas. Iodine too is a halogen and 2 Iodine atoms held together by covalent bond. Cl - Cl bonds and I-I bonds are covalent bonds. the outer electrons of Cl and I take part in covalent bonds therefore they are fixed and not free to move about. therefore no free electrons to conduct electricity.
Sulfur is a solid that too is held together by covalent bonds so it does not have free electrons to conduct electricity.
Silver is a metal and a general property of metals are their ability to conduct electricity.
metal structure are metal ions tightly packed together. when the metal atoms are tightly packed their valence electrons are removed and delocalised. Positively charged metal ions are embedded in a sea of delocalised electrons.
therefore there are delocalised electrons that can conduct electricity
answer is 3) silver