If it is just ratio you must just put the mass number on the either side of the symbol ‘:’ and cancel but the same process is not used to find simplest ratio
Answer:
The answer you are looking for is A
Answer:
the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Explanation:
The λmax is the wavelength of maximum absorption. We could use it to calculate the HOMO-LUMO energy difference as follows:
For ethylene
E= hc/λ= 6.63×10^-34×3×10^8/170×10^-9= 1.17×10^-18J
For cis,trans−1,3−cyclooctadiene
E= hc/λ=6.63×10^-34×3×10^8/230×10^-9=8.6×10^-19J
Therefore, the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Answer:
4KNO3 ==> 2K2O + 2N2 + 5O2
Explanation:
It's a decomposition, but not a simple one.
KNO3 ==> K2O + N2 + O2 I don't usually do this, but I think the easiest way to proceed is to balancing the K and N together. That will require a 2 in front of KNO3
4KNO3 ==> 2K2O + 2N2 + 5O2
Now you have (3*4) = 12 oxygens. Two are on the K2O. So the other 10 must be on the O2
That should do it.