Answer:
A. chemical substance whose atoms all have the same number of protons
Explanation:
An element is a substance which contains identical atoms that have the same number of protons in the nucleus.
Elements are arranged in the periodic table according to their atomic number (= number of protons): so atoms of different elements have a different number of protons in their nuclei.
For a neutral atom, the number of electrons around the nucleus is also equal to the number of protons.
Moreover, atoms of the same element can have a different number of neutrons, despite having the same number of protons - these atoms are called isotopes.
Answer:
A)s = 104.16 m
b)s= 104.16 m
Explanation:
Given that
u = 25 m/s
μ = 0.3
The friction force will act opposite to the direction of motion.
Fr= μ m g
Fr= - m a
a=acceleration
μ m g = - m a
a= - μ g
a= - 0.3 x 10 m/s² ( take g= 10 m/s²)
a= - 3 m/s²
The final speed of the mass is zero ,v= 0
We know that
v² = u² +2 a s
s=distance
0² = 25² - 2 x 3 x s
625 = 6 s
s = 104.16 m
By using energy conservation
Work done by all the forces =Change in the kinetic energy
Negative sign because force act opposite to the displacement.
- 3 x 2 x s = - 625
s= 104.16 m
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572
I think the answer is Snow flakes