Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Answer:
Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:
In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:
The initial potential energy of the spring is given by the equation:
the Kinetic energy of the block is then given by the equation:
so we can now set them both equal to each other, so we get:
This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:
so now we can solve this for the final velocity, so we get:
The sun's energy is refferd to solor energy
When a red giant has insufficient mass it pretty much sheds its outer layer to leave the center core know as the white dwarf