Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
Answer:
10kg
Explanation:
Let PE=potential energy
PE=196J
g(gravitational force)=9.8m/s^2
h(change in height)=2m
m=?
PE=m*g*(change in h)
196=m*9.8*2
m=10kg
Answer:
Data:-m=0.88kg ,g=9.8m/sec² ,P.E=96J ,h=?
Explanation:
solution ,P.E=mgh here we have to find h so h=P.E/mg ,h=96/0.88×9.8 ,h=96/8.624=11.131m and if you want to verify so just put the value of h in same formula, likewise :-P.E=mgh ,P.E=0.88×9.8×11.131=96J so we got the same value of P.E as it is given the question (verified).
The object represented by this graph is moving toward the origin at constant velocity.
Option 3.
<u>Explanation:</u>
In the figure, x-axis is representing increase in the time and y-axis is presenting increase in the distance from bottom to up. But the line in the graph which is plotted is decreasing from high distance to small distance with increase in time. So this indicates that as the time is increasing, the distance is decreasing.
And the object is moving toward the origin as the distance of the object motion is found to decrease with increase of time as per the graph. But the slope of the graph is found to be almost constant, this indicates that the velocity of the object is constant. Thus, the object represented by this graph is moving toward the origin at constant velocity.