Answer: The drag force goes up by a factor of 4
Explanation:
The <u>Drag Force</u> equation is:
(1)
Where:
is the Drag Force
is the Drag coefficient, which depends on the material
is the density of the fluid where the bicycle is moving (<u>air in this case)
</u>
is the transversal area of the body or object
the bicycle's velocity
Now, if we assume , and do not change, we can rewrite (1) as:
(2)
Where groups all these coefficients.
So, if we have a new velocity , which is the double of the former velocity:
(3)
Equation (2) is written as:
(4)
Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>
Answer:
a.
b.
Explanation:
I have attached an illustration of a solid disk with the respective forces applied, as stated in this question.
Forces applied to the solid disk include:
Other parameters given include:
Mass of solid disk,
and radius of solid disk,
a.) The formula for determining torque (), is
Hence the net torque produced by the two forces is given as a summation of both forces:
b.) The angular acceleration of the disk can be found thus:
using the formula for the Moment of Inertia of a solid disk;
where = Mass of solid disk
and = radius of solid disk
We then relate the torque and angular acceleration () with the formula:
GPE= weight•height= 15 N• 0.22meter= 3.3 Joules
I hope this helps ~~Charlotte~~
Answer:
<h2>
3338.98 kg/m³</h2>
Explanation:
The formula for calculating the relative density of a substance is expressed as
Relative density of a liquid = Density of the liquid /density of water
Given relative density of a liquid = 0.34
Density of water 997kg/m³
Substituting into the formula we have;
Density of the liquid = Relative density of a liquid * density of water
Density of the liquid = 0.34 * 997
Density of the liquid = 3338.98 kg/m³
Time = (distance) / (speed)
Time = (180 miles) / (60 mi/hr)
Time = (180/60) (mi-hr/mi)
<em>Time = 3 hours</em>