The given equilibrium reaction is,
The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.
Answer:
the answer is B.Construction
Explanation:
Answer:
2.772 seconds
Explanation:
Given that;
t1/2 = 0.693/k
Where;
t1/2 = half life of the reaction
k= rate constant
Note that decomposition is a first order reaction since the rate of reaction depends on the concentration of one reactant
t1/2 = 0.693/2.5 x 10-1 s-1
t1/2= 2.772 seconds
Answer:
Kindly check the explanation section.
Explanation:
Based on the description of the reacting -OH group containing Compound, the drawing of the chemical compound is given in the attached picture.
So, without mincing words let's dive straight into the solution to the question.
The reaction between the OH containing compound and PCC is an oxidation reaction.
Looking at the carbon number 1 which the first OH group and CH3 are attached to. Oxidation can not occur here as tertiary alcohol can not be oxidize.
Hence, the second OH will be oxidized into a carbonyl group, C = O. Kindly note that when alcohol oxidizes it turns into an aldehyde.
The equation for the reaction is also given the the attached picture.