If the lens in a person's eye is too highly curved, this person is suffering from: nearsightedness.
lens is a piece of transparent material (such as glass) that has two opposite regular surfaces either both curved or one curved and the other plane and that is used either singly or combined in an optical instrument for forming an image by focusing rays of light.
The lens is used to form an image of an object by focusing rays of light from the object.
Various types of lenses are :
- Concave lens.
- Convex lens.
- Plano lens.
learn more about lens here
brainly.com/question/9757866
#SPJ4
Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:
where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz
Therefore, the wave speed is
Answer:
Explanation:
As we know that
velocity of bike = 7.5 m/s
velocity of car is 10 m/s
deceleration of car is 0.75 m/s^2
part a)
velocity of bike with respect to car is given as
acceleration of bike with respect to car is given as
now the distance of the bike with respect to car is given as
Part b)
Elastic potential energy is kind of like pulling on something and then letting it go, with rubber bands, or a bow, or a slingshot, something with elastic properties.
Gravitational potential energy has to do with how high something is, and has to do with earth’s gravitational pull.
Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg