Answer:
a = - 5 m/s²
Explanation:
The acceleration of the ball can be found by using the general formula of acceleration as follows:
where,
a = acceleration of ball = ?
ΔV = change in velocity = Final Velocity - Initial Velocity
ΔV = - 0.4 m/s - 0.6 m/s = -1 m/s
Δt = time of contact with the wall = 0.2 s
Therefore, using the values in equation, we get:
Therefore, the correct option is:
<u>a = - 5 m/s²</u>
It is a hammer because hammers are not examples of a simple machine
Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
thanks again and have to go to the store and get some rest I will be there at puno my phone is not working and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about you
Answer:
same 0.81m
Explanation:
in this problem if we assume there no resistance of any sort. and we apply the energy conservation
change in Potential energy = change in kinetic energy
mgh = 0.5mv^2
gh = 0.5v^2
the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.
so at the bottom
put h = 0.81m
9.81 * 0.81 * 2 = v^2
v=3.99 m/s
both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size