For more boost and to stop chases of fire
The government should put it support in a combination of sources, as no
source in the present can fully provide all energy requirements.
Answer:
F = - 3.56*10⁵ N
Explanation:
To attempt this question, we use the formula for the relationship between momentum and the amount of movement.
I = F t = Δp
Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say
v = d / t
t = d / v
Given that
m = 26 g = 26 10⁻³ kg
d = 50 mm = 50 10⁻³ m
t = d/v
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
F t = m v - m v₀
This is so, because the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵
F = - 3.56*10⁵ N
The negative sign is as a result of the force exerted against the bullet
Answer:
Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:
By knowing this, we can estimate the total current through the circuit,:
So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:
So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:
Answer:
184 feets
Explanation:
Given the data:
time (sec) __ velocity (ft/sec)
0 __________30
1 __________ 54
2 __________56
3 __________34
4 __________ 8
5 __________ 2
6 __________22
Using left end approximation:
(0,1) ___ f(0) = 30
(1,2) ___ f(1) = 54
(2,3) ___f(2) = 56
(3,4) ___f(3) = 34
(4,5) ___f(4) = 8
(5,6) __ f(5) = 2
Hence, the Total distance traveled during the 6 second interval is:
Change ; dT = 1
1 * (30 + 54 + 56 + 34 + 8 + 2) = 184