Answer:
thermal energy
Explanation:
heat transfers into it causing it to physically change
Answer:
The speed of water must be expelled at 6.06 m/s
Explanation:
Neglecting any drag effects of the surrounding water we can assume the linear momentum in this case is conserves, that is, the total initial momentum of the octopus and the water kept in it cavity should be equal to the total final linear momentum. That's known as conservation of momentum, mathematically expressed as:
with Pi the total initial momentum and Pf the final total momentum. The total momentum is the sum of the momentums of the individual objects, in our case the octopus and the mass of water that will be expelled:
with Po the momentum of the octopus and Pw the momentum of expelled water. Linear momentum is defined as mass times velocity:
Note that initially the octopus has the water in its cavity and both are at rest before it sees the predator so :
We should find the final velocity of water if the final velocity of the octopus is 2.70 m/s, solving for :
The minus sign indicates the velocity of the water is opposite the velocity of the octopus.
I️ would say agility. Although, speed could also be an answer.
Answer:
9.4
Explanation:
magnitude is the sum of the squares.
If you are given horizontal and vertical components, treat those as the rise and run of a triangle, the rise of 8 with a run of 5 and you want to find the hypotenuse.
How do you find the long side of a triangle?