The reactants are found on the left side, the products are found on the right side.
Answer:
The value of an integer x in the hydrate is 10.
Explanation:
Molarity of the solution = 0.0366 M
Volume of the solution = 5.00 L
Moles of hydrated sodium carbonate = n
Mass of hydrated sodium carbonate = n= 52.2 g
Molar mass of hydrated sodium carbonate = 106 g/mol+x18 g/mol
Solving for x, we get:
x = 9.95 ≈ 10
The value of an integer x in the hydrate is 10.
It would cause a drop <span>but I am not sure double check other answers </span>
Answer: The correct option is 2.
Explanation: Heat flow is defined as the transfer of energy from hotter object to cooler object when two objects are kept together at different temperatures. As the energy remains conserved, so the heat flow will take place until the equilibrium is attained.
In the above asked question, Object A is at 40° C and Object B is at 80° C.
Object B is at higher temperature, so the heat flow will take place from Object B to Object A.
Hence, the correct option is 2.
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³