Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as
<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =
- = wavelength of the wave.
- x = horizontal displacement of the wave.
- = angular frequency of the wave = .
- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,
therefore,
It is the required frequency of the wave.
Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
We have to calculate the impulse of a hockey puck.
Imp = m * ( v 1 - v 2 ) = m * Δ v
v 1 = - 10 i m/s,
v 2 = ( 20 * cos 40° ) i + ( 20 * sin 40° ) j =
= ( 20 * 0.766 ) i + ( 20 * 0.64278 ) j = ( 15.32 i + 12.855 j ) m/s
Δ v = ( 15.32 i + 12.855 j ) - ( - 10 i ) =
= 15.32 i + 12.855 j + 10 i = 25.32 i + 12.855 j
| Δv | = √ ( 25.32² + 12.855²) = √806.35 = 28.4 m/s
Imp = 0.2 kg * 28.4 m/s = 5.68 N-s
Answer: D ) 5.68 N-s.