Heat; rather, or change of the molecules to make them move faster
1) Chemical equation
<span>2NH4Cl(s)+Ba(OH)2⋅8H2O(s)→2NH3(aq)+BaCl2(aq)+10H2O(l)
2) Stoichiometric ratios
2 mol NH4Cl(s) : 54.8 KJ
3) Convert 24.7 g of NH4Cl into number of moles, using the molar mass
molar mass of NH4Cl = 14 g/mol + 4*1 g/mol + 35.5 g/mol = 53.5 g/mol
number of moles = mass in grams / molar mass
number of moles = 24.7 g / 53.5 g/mol = 0.462 moles
4) Use proportions:
2 moles NH4Cl / 54.8 kJ = 0.462 moles / x
=> x = 0.462 moles * 54.8 kJ / 2 moles = 12.7 kJ
Answer: 12.7 kJ
</span>
From Grahams Law the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure.
Therefore; R1/R2 = √mm2/√mm1
The molecular mass of Carbon dioxide is 44 g
Hence; 1.8 = √(44/x
3.24 = 44/x
x = 44/3.24
= 13.58
Therefore, the molar mass of the other gas is 13.58 g/mol
The term "pKa" is a measure of the strength of an acid in solution. It is defined as the negative base 10 log of the acid dissociation constant. A lower pKa value indicates a stronger acid and A higher pKa value indicates a weaker acid
Expect to find in the pellet of a seagull bones and fur and feathers the seagull has eaten. The relatively small amount of indigestible bone and fur that remain will be compacted by their stomach muscles into a pellet similar to the owl’s.