The function is a continuous function at 2 if the LHL and RHL will be the same as the limit of the function.
<h3>What is continuity of a function?</h3>
It is defined as the property of a function in which the function varies continuous, and we plot the graph of a function it doesn't break.
We have a function:
If f(x) is a continuous, then it will follow:
f(2) = 2² - 2 = 4 - 2 = 2
Left-hand limit at 2 = right-hand limit at 2 = 2
Limit at 2 of a function = 2
Using limit, we can check the whether the function is differentiable or not.
Thus, the function is a continuous function at 2 if the LHL and RHL will be the same as the limit of the function.
Learn more about the continuous function here:
brainly.com/question/21447009
#SPJ1