The change in the internal energy of the ideal gas is determined as -28 J.
<h3>
Work done on the gas</h3>
The work done on the ideal gas is calculated as follows;
w = -PΔV
w = -1.5 x 10⁵(0.0006 - 0.0002)
w = -60 J
<h3>Change in the internal energy of the gas</h3>
ΔU = w + q
ΔU = -60J + 32 J
ΔU = -28 J
Thus, the change in the internal energy of the ideal gas is determined as -28 J.
Learn more about internal energy here: brainly.com/question/23876012
#SPJ1
a = ( V2 - V1)/( t2 - t1)
3.2 = ( 23.5m/s - 15.2m/s)/(t - 0)
3.2m/s = 8.3/t
t(3.2) = 8.3
t = 8.3/3.2
t = 2.59 seconds
By Snell's law:
η = sini / sinr. i = 25, η = 1.33
1.33 = sin25° / sinr
sinr = sin25° / 1.33 = 0.4226/1.33 = 0.3177 Use a calculator.
r = sin⁻¹(0.3177)
r ≈ 18.52°
Option A.
God's grace.