The correct answer among the choices given is option B. The energy transformation that occurs in the core of a nuclear reactor is from nuclear energy to thermal energy. In a power plant nuclear fission which involves nuclear energy to heat up water around it. This part is the core of the process.
An amplifier.
Electrical energy provided to an amplifier is converted into sound energy as it is "fed" or provided to the speaker portion of an amplifier.
Answer:
Explanation:
Given that,
The current flowing in the circuit, I = 3 A
The power of the battery, P = 25 W
We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :
Put all the values to find R.
So, the resistance is equal to .
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Isn’t it a light box , mirror and / or angle measurer?