Answer:
2.33 mol C
Explanation:
Step 1: Write the balanced generic chemical equation
3 A ⟶ C + 4 D
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of A to C is 3:1.
Step 3: Calculate the number of moles of C produced from 7 moles of A
We will use the previously established molar ratio.
7 mol A × 1 mol C/3 mol A = 2.33 mol C
Most solids a) are dense and difficult to compress.
Most solids are closely compacted, their molecules are close together and vibrate. They don't move freely like gas or water molecules do.
They are difficult to be squeezed or flattened.
No beginning or end I believe
Answer: The distance is slightly less than 3.5 m
Explanation: assuming wall and target are the same thing, and the bullet has constant velocity, the bullet will travel 7 m in half a second, so half that distance is 3.5 m.
In reality, the bullet is decelerating (at an unknown rate) so the distance is slightly less than 3.5 m.
There is also a vertical velocity component, which means it hits the target/wall at an angle. The trajectory is such that it hits the wall above the shooter because the ricochet hits at ~the level at which it left the firearm.
If the wall was absent, the bullet would have described a parabola which brough it back to the initial level after 7m. This could be calculated, but it means that the actual distance between the shooter and the wall is slightly less than 3.5 m
In addition, the collision with the wall is not 100% elastic, so the velocity aftercthe ricochetvis further reduced.
A calculation would be complex because these confounding factors are not completely independent of each other, but all reduce the average velocity and therefore the distance.
Therefore it is only possible to say that the distance was somewhat less than 3.5 m
answer a) the existence of isomers is a reason for the large number of carbon compounds