Answer:
Phosphorus trichloride, PCl₃ undergoes change in bonding and molecular force of attraction, causing it to be liquid at room temperature.
Explanation:
Unlike other chlorides of Period 3 elements, Phosphorus trichloride, PCl₃ changes the structure of its molecular bonding from ionic to covalent bonds as it transitions to fluids (liquids or gases). The PCl₃ molecule also has the weak Van der Waals dispersion and dipole-dipole attraction, making it a fuming liquid at room temperature, with no electrical conductivity.
Answer:
D
Explanation:
Valency is the combining power of an element
Holding
temperature and pressure constant
<span>the
most important feature in determining the phase of a given organic compound is
pressure. ransfers of organic compounds
between phases are controlled by molecular interactions (intermolecular bonding)
in the two phases between which transfer is occurring. This is governed
by temperature and pressure</span>
<h3>
Answer:</h3>
0.819 mol Ag
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.93 × 10²³ atoms Ag
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:
- Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.818665 mol Ag ≈ 0.819 mol Ag
<u>Answer:</u> The equilibrium concentration of is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of = 2.00 M
The given chemical equation follows:
<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of for above equation follows:
We are given:
Putting values in above expression, we get:
Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of
Hence, the equilibrium concentration of is 0.332 M