Answer:
As the particles move further away from their normal position (up towards the wave crest or down towards the trough), they slow down.
Explanation:
This means that some of their kinetic energy has been converted into potential energy – the energy of particles in a wave oscillates between kinetic and potential energy. Hope that this helps you and have a great day :)
Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is
Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e
- inversely proportional to its cross section area i.e
Therefore
ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:
......(1)
Again for tungsten:
........(2)
Given that and
Dividing the equation (1) and (2)
[since and ]
Therefore the ratio of diameter of the copper to that of the tungsten is