5Cbigg%28%20%5Cfrac%7B1%7D%7Bk%7D%20%20%5Cbigg%29%5CGamma%20%5Cbigg%28%20%20%5Cfrac%7B2%7D%7Bk%7D%20%5Cbigg%29%5CGamma%20%5Cbigg%28%20%20%5Cfrac%7B3%7D%7Bk%7D%20%5Cbigg%29%20%5Cdots%5CGamma%20%5Cbigg%28%20%5Cfrac%7Bk%7D%7Bk%7D%20%20%5Cbigg%29%7D%20%20%5C%5C%20" id="TexFormula1" title=" \rm \lim_{k \to \infty } \sqrt[ k]{ \Gamma \bigg( \frac{1}{k} \bigg)\Gamma \bigg( \frac{2}{k} \bigg)\Gamma \bigg( \frac{3}{k} \bigg) \dots\Gamma \bigg( \frac{k}{k} \bigg)} \\ " alt=" \rm \lim_{k \to \infty } \sqrt[ k]{ \Gamma \bigg( \frac{1}{k} \bigg)\Gamma \bigg( \frac{2}{k} \bigg)\Gamma \bigg( \frac{3}{k} \bigg) \dots\Gamma \bigg( \frac{k}{k} \bigg)} \\ " align="absmiddle" class="latex-formula">
1 answer:
We have
and as k goes to ∞, the exponent converges to a definite integral. So the limit is
You might be interested in
Count the squares
Side 1:5
Side 2:7
Side 3: 5
Side 4: 7
Answer:
0
Step-by-step explanation:
Anything times 0 is 0.
Answer:
The triangle is acute
14 and 21 and 18
is three of them